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Given a Hu bert space H, Iet H1 and H2~ e two arbitrary subspaces. The problem of

finding all minimal splitting subspaces with respect to~ lj and H~ is solved. This result is

applied to the stochastic realization problem. Each minimal stochastic realization of a

given vector process y defines a family of state spaces. It is shown that these families are

precisely those families of minimal splitting subspaces (with respect to the past and the

future of y) which satisfy a certain growing condition.
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1.~ Introduction.

The problem of finding all minimal Markovian (state space) representations of a given
random process {y(t); t E T} is known as the stochastic realization problem, It has been
studied extensively in recent years both in its deterministic [2,3,15] and its probabilistic
[1,4-6,9,10,12.14] aspects. In this paper we extend and unify the axiomatic state space
approaches presented in [5] and [14] .

The notion of minimal splitting subspace, a generalization of a concept introduced
in [7] , was applied to this problem in [9] and [5] . This is a natural approach, for, at
any given time t E T, a minimal splitting subspace X~ (with respect to the spaces spanned
by the past and the future of y) can be interpreted as a subspace of smallest size cqntain.
ing all the information from the past needed in predicting the future and all the informa.
tion in the future required to estimate the past, making it an obvious candidate for a
state space. A dynamical state space description wilt then require considering families
{X

~; t € T) of minimal splitting subspaces. However , as we shall see below, an arbitrary
such family will not in general yield a stochastic realization. For this to be the case, we
need to impose a natural growing condition.

iS

We begin this paper by solving the general problem of finding all minimal splitting
subspaces with respect to two arbitrary subspaces. This is a geometric problem in
Hu bert space, and it contains as a special case, the splitting subspace problem of the
stochastic realization problem. Secondly we apply these results to the problem of find.
ing all Markovian representations of an arbitrary stochastic vector process. —

2. Some preliminaries and notations

Let H be a Hilbert space. For two subspaces A and B of H (al l subspaces are taken
to be closed), A 1. B means that A and B are orthogonal, A ~ B denotes direct sum,

A e B is the subspace of A orthogonal to B, A V B is the closed linear hull of A and B,
and A1 is the orthogonal complement of A in H. The orthogonal projection of X E H
onto A is denoted EAX or E {X IA ) . Let ‘~ A B or ‘~ {BlA }be the smallest subspace
containing EAR, i.e., the closure of EAB.

We shall write A .1 B IX if the three subspaces A, B and X satisfy the condition

(ojI) (EXa. EX~3) for all ~ E A, j3 E B. 
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It can be seen that (1) is equivalent to each of the conditions

E{aIB V X } E{cx IX)for all ~‘x E A  (2)

E {j3fA V X} E {131X) for aIl~ EB (3)
S 

and,i f X C A ,also to

A 9 XIB. (4)

3. Minimal splitting subspaces

Let 
~ 

and H 2 be two arbitrary subspaces of H and define H0 to be the vector sum

of these, i.e., H0 = H1 V H2.
4

Definition 1. A subspace X C  H is a splitting subspace (with respect to H1 and H2) if

- H1 IH 2IX. (5)

A splitting subspace X is minimal if there is no proper subspace of X satisfying (5) and

S 
internal if X C H0.

The foflowing lemma will be useful in testing the minimality of a splitting subspace.

Lemma 1. Let X be a splitting subspace and assume that X = X 1 ~ X2 where X 1 and X2
are subspaces of X. Then X 1 is a splitting subspace if and only if

x2 - x 2E H 1 I E  H 2 (6)

Proof. (Cf [14].) Take XE H1 and i~ E H~. Then, in view of (5),

(X ,17) = (EXA. EXn) (EX 1X, E
X 1,l) (EX2X, E

X2I?).

Hence, (6) is equivalent to (X ,r~) = (EX 1X, E~~ i7) for all XE H1 and ‘~ 
E H2, which is the

same as H1 l H 2lX 1. .

S The purpose of this section is to solve Problem P1. 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Problem P1. Find all minimal splitting subspaces.

Let us also consider the following problem.

Problem P2. Find all splitting subspaces X such that

X f l H1
1=0 (7)

X r~H2~ =0 (8)

- :  Remark 1. Using the orthogonal decomposition

A = E{BIA}e(A fl &J, 
(9)

which holds for any subspaces A and B of H, we see that (7) and (8) are equivalent to

X = E( H 1JX} (7) ’

and

X=E(1121X} (8) ’

respectively.

Proposition 1. Problem P1 and P2 are equivalent.

Proof. (i) Let X be a solution of P1. Using (9) we can write X = X 1 e X2 where X 1 E X H1
and X2 X ~ H1

1. Obviously E 2H1 = 0, and therefore (6) holds. Hence X 1 isa splitting

subspace (Lemma 1). Then, since X is a minimal splitting subspace, X 1 X, and thus (7)

holds. In the same way we show (8). Therefore X is a solution of P2.
• (ii) Let )C be a solution of P2, and let X 1 be any splitting subspace contained in X. To

see that X is a solution of P1 it remains to show that X2 :— X OX 1 0. By Lemma 1, (6)

holds. Now, in view of X2 C X and condition (7)’, ~~ 2H1 ~
X2E

X
Hl ~

.X 2X x2.
In the same way, using (8) ’, it can be shown that j

X2H2 = X2, and therefore, due to (61,

x2 =0.

From Proposition I we see that our main problem P1 can be replaced by the mathemati.
cally more convenient problem P2. To solve P2 we shall first study minimal splitting
subspaces satisfying ~~e of the conditions (7) and (8), say (7) .
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Lemma 2. The subspace X C H is a splitting subspace satisfying (7) if and only if
X E { H 1IS} for some subspace S~~ H2.

Proof. (Cf. [61.) (if) : Let X=  E(H 115} whereSD H2. Then ESX =  EXX for eachX EH 1.
S Since S D H2 V X, this implies that EH2 V X

~ = EXA for each XE H1, i.e., in view of (2),
H1 i. H2JX. Hence X is a splitting subspace satisfying (7)’.
(only if) : Let X be a splitting subspace satisfying (7)’. Then, X = ~

X H1 = ~.H2 V X
H1

by condition (2), and hence X = E{H 1IS) with S = H2 V X ~ H2. •

Then, by introducing the additional condition (8), we obtain the following theorem
which gives the solution of P1. For this we first need to define the frame space

H°= E{H 11H2 ) V E{H 21H 1), (10)

which is itself a (nonminimal ) internal splitting subspace [5] .

Theorem 1. The subspace X is a minimal splitting subspace if and only if X = E [H1 IS)
for some subspace S such that H 2 CS C (H2 V H°) e H0

1.

We need the following lemma to prove this theorem.

Lemma 3. Let S D H2. Then ES (H 1 t~ H2
1) = (ESH1) fl H~

1.

Proof. By definition, ES (H1 fl H2
1) {ESX I XE H1 and Xi. H2). But Xl H2 is equivalent

to E
H2X 0, which, in view of S D H2, is the same as E

H2 ES
X = 0 or ESA E H2

1. •

Proof of Theorem 1. In view of Lemma 2 and condition (8) , it only remains to show that
SC (H2 V H°) H0

1 if and only if (ESH1) (~ H2
1 = 0. But, by Lemma 3, the latter

condition is equivalent to S C (H1 fl H2
1)1. Now, using formula 

~~~~~~~ it is seen that H0 =
(H 2 V H°) • (H1 fl H2

1), and therefore (H1 Cl H~
1)1 = (H 2 V H°)o  H0

1.

Corollary 1. The subspace X is an internal minimal splitting subspace if and only if X =

E{H 1I S)FOr SOmeSUbSPaCeSSUChma: H2 C S C H V H O

Theorem 1 provides a parameterization of the set of minimal splitting subspaces.

We shall now show that the mapping S-~’X is one to one if and only if S is restricted to
H0. in which case we obtain precisely the internal minimal splitting subspaces.

_ _ _ _ _  -. 5. ~~~~~~~~~~~~ - - 
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Proposition 2. Let S be a subspace such that S D H2, and define X = E { H 1 IS). Then

S = ( H 2 V X) ~~ K for some subsPace K C H 0
1. IfSCH 0, K = 0 .

Proof. Clearly S D H2 V X, and therefore S = (H2 V X) e K for some subspace K. We will

show that K C H0
1. To this end, as in the proof of Lemma 2, first note that ESA = E XX

for each XE  H1. Since SD H2 V X, this implies that ESX = E
H2 V X

~ for all X E H1, and

consequently K I H1. Since, in addition K I H2 (by definition), K I H0. •

4. Applications to the stochastic realization problem

Let {y(t); tE T) be a wide sense separable [1 1~ centered rn-dimensional Gaussian

stochastic process defined on a probability space (�2, F; P) and with a time set T which

is either discrete or continuous. For any (complete) sigma-field S C T~ define the

Gaussian space H(S) to be the subspace of L2(~2, F, P) consisting of all centered 5—

measurable real Gaussian stochastic variables in (fl, F, P) [8) . The space H( F) will

play the role of H in Section 3; it is a Hu bert space with inner product (~,r~) = E 
~~

where E { - } denotes mathematical expection. To simplify matters, we shall write H(y)

instead of H(o{y(t) ; t E T).), and we shall adhere to this convention whenever S is

induced by a random process. It is well-known [8] that H(y) = sp(yk (t) ; t € T, k =

1,2,...,m) ,  where~~ { -  ) signifies the closed linear hull in L2(~2, F, P).

To exploit the theory of minimal splitting subspaces developed in Section 3, we

need to define the past field V~ and future field ~t 
of the process y for each t E 1.

Here we shall take V~ and V~ to be the sigma—fields generated by (y(s) ; s< t)

and {y(s); s~~ t}  respectively (take a{d,~} to be {
~, fl)), but other definitions are

possible; ‘~e may take s ~ t instead, and in some applications it is better to let Yj ~ and

V~ be generated by the past and future increments of y [5, 13] . Then, for each t E T,

define the past space H~ (y) and the future space Ht Cv ) to be the Gaussian spaces

H(Yfl and H(Vt) respectively. In the setting of Section 3 the subspaces H(y), H~ (y)

and H~ (y) will play the parts of H0, H1 and H 2 respectively.

Definition 2. A (Gaussian) stochastic system on (
~ , F , P) is a pair (x ,y) of centered

(jointly Gaussian) stochastic processes {x(t); t E T} and (y(t); t E T} , taking values

in an arbitrary real vector space E and in Rm respectively, such that, for every t E T,

- - -  — -5-- -:- ----— -‘------- - - .-- - - --
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the Gaussian subspacet X~ generatea by the random vector x(t) satisfies

[H~ (y) V X ~i 1[Ht(y) VX t ] IX t . 
- 

(11)

where X~ : V~çt X~ and Xt = V
~~tX5. The processes x and y are called the state process

and the output process respectively, and X.~ is the state space at time t. The stochastic

system is finite dimensional if dimXt < ~ for all t E T.

Remark 2. Trivially, the family {X t; t E T}of state spaces satisfies the conditions

(I) (Xi; t E T)is Markovian, i.e. X~
. 
I X~ Xt for all t € T. This is equivalent

to saying that ~x(t) ; t E T) is a Markov process.

(ii) for each t E T, X~ is a splitting subspace with respect to H~ (y) and Ht(y).

We shall say that two stochastic systems (defined on the same probability space)
are equivalent if , for each t E T, their output processes agree a.s. and their state spaces are
the same. Hence equivalent stochastic systems can have different state processes but

these are related by trivial coordinate transformations in-the state spaces.

As an example let us consider a discrete—time stochastic system with T = Z~

Proposition 3. All finite dimensional stochastic system s (x ,y) with T = Z+ have a
representation of type

x(t + 1) A(t )x (t) + B(t)w(t) ; x(0) = x0 (12a)

y(t) C(t)x(t) + D(t)w(t ), (12b)

• where {A Ct) , B (t), C(t) , DC t); t € Z~ ) are matrices of appropriate dimensions, x0 is a

S zero-mean Gaussian random vector, and w is a unitary Gaussian white noise process
independent of x0. Conversely, any pair (x ,y) of stochastic processes satisfying (12)

is a stochastic system.

Proof. (i) Let (x ,y) be a stochastic system with T = Z ’ and the state process x taking
values in R’~. We shall prove that (x ,y) satisfies a representation (12). To this end first
note that

~ That is, X~ := l-I(x~
), where X~ is the sigma-field induced by the random vector x(t).

-
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(x(t÷1)) EHI(y) Vx t 
x(t +1) 

+E [H t (Y) VX t ]’ (x(t÷1)) 
(13)

~y(t) / y(t) y(t) /

Now, (11) implies that E
Ht (v) VXt X =  E

XtX for all XE Ht(y) VXt (property (2)) , and
consequently there are matrices A(t) and C(t) such that

EHt M~
xt (x

t+1
) 

= (~::ñxt. (14)

The second term of (13) is a white noise process; it is the innovation process of
By normalizing we obtain 

y(t

~ [H t (~ )~’x t ] (x t+1~\ 
(B(t ) w(t) , (15)

~ y(t) ) ~ D(t) j
where w is a unitary Gaussian white noise and 8(t) and D(t) are matrices such that (B(t)

0(t) B(t)
has full rank. Hence (x ,y) satisfies (12). It remains to show that x0 .1 H(w). But, since 0(t)
has full rank, (15) implies that w(t) € [H~ (y)VX~~]

1- for all t € Z~. Hence x0 I H(w).

(ii) Assume that (x ,y) satisfies (12), and, for each t € Z+, let X~ be the Gaussian space

generated by x(t). Since w is a white noise process and x0 I Ht(w) , X0 • H~ (w) is
orthogonal to H~ (w) or equivalently

[X o eHj (w)] 1[Ht (w)eX t] IX t - (16)

(property (4)). From (12) it is easy to see that H~ (y)VX~ C X0 e H~ (w) and that

Ht(y)VXt C Ht(w) • X~ and therefore (11) holds. Hence (x ,y) is a stochastic system. •

Similar results hold for continuous—time processes and stationary processes defined on

- the whole real line.

Definition 3. A stochastic realization (or Markovian representation) of {y(t); t E 
~~~) 

on

(~2,F, P) is a stochastic system (x,z) on (fl,F, P) such that, for all t ET , z(t) = y(t) a.s.

The realization is said to be finite dimensional if the stochastic system is finite dimensional

and internal if X~ C H(y) for t E T.

Theorem 2. Every wide sense separable centered Gaussian stochastic process {y( t); t E T)

has a stochastic realization on (~7, V. I’) where V is the sigma-field generated by the process y.

Proof. For each t E T, set X~ = H~ (y). Since trivially H~~(y) I H(y)~H~ (y) , X~, thus
defined, satisfies (11) for all t E T. For each t E 1, choose a basis x(t) in Xt; this can be

L ~~~~~~~~~~~~~ - ~~~~~~~~~~ 55 -—55 —55- - 
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done due to the separability . Then (x ,y) is a stochastic realization on (~2, y, P). Of course,

we may as well set X~ = Ht(y). •

The basic problem in realization theory is to find the smallest possible state spaces. Of

course, in general , the chc’ . ~ in the proof of Theorem 2 will not suffice for this purpose. We

need a concept of minimality. To this end first note that the family H of all subspaces of

H( F ) isa partially ordered set with respect to vector space inclusion.

Definition 4. A stochastic realization (x ,y) on (~1,F , P) is minimal at time t if the correspond-

ing state space X~ is minimal with respect to the ordering of the partially ordered set H, i.e. if

there is no smaller subspace of H( F ) for which (11) holds. We say that (x ,y) is minimal 
55

if it is minimal at each time t E T.

Proposition 4 - (Ruckebusch). A stochastic realization is minimal if and only if it is both

observable and constructible, i.e., for every t € T,

Xt Cl [H~(y)]~ 0 (observability) (17)

S X~ Cl [H~~(y)] 1 = 0 (construcrability). (18)

The proof of this result is a trivial general ization of one given in [14] for the s~~tionary

case.
Minimal splitting subspaces with respect to the past and future spaces of y are natural

candidates for state spaces in the stochastic realization problem. If we consider splitting

subspaces contained in the past space or in the future space only, the Markov property is a

direct consequence of the splitting property. In general , however , we must impose a

certain growing condition, as described in the following th~orem.

Theorem 3. A family ~Xt; t € I) of separable subspaces of H ( F )  defines a minimal stochastic

realization (x ,y) (in the sense that X~ is the Gaussian space generated by x(t) for each t E T)

if and only if
(i) for each t E T, X~ is a minimal splitting subspace with respect to H~ (y) and

H~ (y);

(ii) there exists a family {Zt; t € T} of subspaces, with the property Z~ C [H(y)VX~i
1

for a l / t E  T such that the family {St ; t€ T ) ,  where St : [H 1 (y)VX
~
] •Z~

, is
nondecreasing, i.e. S~. -C S~ whenever r ~ t

S 5 55
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Proof. (if) : By Condition (i), Lemma 2, and Proposition 2, X~ = E~ H~ (y) I[H~ (y) VX
~
] • Kt }

where K
~
I H~ (y). Therefore, since in addition Zt .L Ht(y), X~= E {Ht(y) ISt }. Consequently,

in view of (9) , 
S

-

S 
s t ex t =s t fl [ Ht (y )] I, (19)

which is nondecreasing in t , for (St } and { [Ht (y)] I) are. Hence, since trivially (St e X t) I X~,
-
~ 

(St 0 X~
) I X~ By (19), we also have (S~ 0 Xt) I H~ (y), and therefore , in view of property

(4), 1 (H
~

(y) Vxt] )X~. But, due to condition (ii), H~ (y) VX~ C S~, and consequently
(11) holds. Then, choosing a basis x(t) in X~ for each t E T produces the required state
process. The stochastic realization (x ,y) is minimal, for {X t; t € T} is a family of minimal
splitting subspaces.

(only if) : Let (x ,y) be a minimal stochastic realization with state spaces {X t; t E T}. Then,
Condition (i) follows fro m Remark 2 (ii) and, as for the minimality, from Proposition 1
and 4; note that conditions (7) - (8~ and (17) — (18) are identical. To show that Condition
(ii) holds, set Z~ : [H~~(y) VXfl 0 [H~ (y) VX t]. Then S.~ = H~ (y) VX~~wh~ch is nori-

- - decreasing. It remains to show that Z~ C [H(y)VX~ ] ~ ~ follows from (11), (4) and the
definition of Z~ that

Z~
C [H~~(y)VXfl I {[H~ (y)VXfl Ox t }. (20)

- 

Since, in addition Z~I 1H~ (y)VX~] ,  Z~ I [H(y) VXt ] as required. .
S We obtain a simpler version of this theorem by restricting our attention to in ternal

realizations.

• Corollary 3. A family (X t ; t E T} of subsoaces of H(y) defines a minimal stochastic
realization of y if and only if Condition (,7 of Theorem 3 holds and the family {S t ; t E T },

where here S~ : H
~~

(y) VX
~
, is nondecreasing.

Proof. ( i f ) :  Noting that H~y) is separable , this part follows immediately from Theorem 3.
(only i f ) :  it only remains to show that Z1 = 0 for all t € T. But, by definition,
Z
~ 

C H (y)VX~ C H(y). Therefore , in order to satisfy the condition Z~ C [H (y)VX~]1

we must have Z~ = 0. •

S 
Comparing Corollaries 1 and 3 we can see from Proposition 2 that, in general, there

S 
. exist families of (internal) minimal splitting subspaces which do not evolve in time in a

- - - _ _  -



- -  _ -~~~~~~~

Markovian fashion. To see this, we may choose a family (St; t E T) which is not non—

decreasing.
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